login
If n is a prime power p^m, m >= 1, then m, otherwise 0.
32

%I #46 Feb 06 2022 06:51:13

%S 0,1,1,2,1,0,1,3,2,0,1,0,1,0,0,4,1,0,1,0,0,0,1,0,2,0,3,0,1,0,1,5,0,0,

%T 0,0,1,0,0,0,1,0,1,0,0,0,1,0,2,0,0,0,1,0,0,0,0,0,1,0,1,0,0,6,0,0,1,0,

%U 0,0,1,0,1,0,0,0,0,0,1,0,4,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0

%N If n is a prime power p^m, m >= 1, then m, otherwise 0.

%C Calculate matrix powers: (A175992^1)/1 - (A175992^2)/2 + (A175992^3)/3 - (A175992^4)/4 + ... Then the nonzero values of a(n) are found as reciprocals in the first column. Compare this to the Taylor series for log(1+x) = (x)/1 - (x^2)/2 + (x^3)/3 - (x^4)/4 + ... Therefore it is natural to write 0, 1/1, 1/1, 1/2, 1/1, 0, 1/1, 1/3, 1/2, 0, 1/1, ... Raising n to a such power gives A014963. - _Mats Granvik_, _Gary W. Adamson_, Apr 04 2011

%C The Dirichlet series that generates the reciprocals of this sequence is the logarithm of the Riemann zeta function. - _Mats Granvik_, _Gary W. Adamson_, Apr 04 2011

%C Number of automorphisms of the finite field with n elements, or 0 if the field does not exist. For n=p^k where p is a prime and k is integer, the automorphism group of the finite field with n elements is a cyclic group of order k generated by the Frobenius endomorphism. - _Yancheng Lu_, Jan 11 2021

%H Daniel Forgues, <a href="/A100995/b100995.txt">Table of n, a(n) for n = 1..100000</a>

%F A100994(n) = A014963(n)^a(n);

%F a(A000961(n)) = A025474(n).

%F a(n) = Sum_{d|n, gcd(d, n/d) = 1} (-1)^omega(n/d) * bigomega(d). - _Ilya Gutkovskiy_, Apr 15 2021

%p f:= proc(n) local F;

%p F:= ifactors(n)[2];

%p if nops(F) = 1 then F[1][2]

%p else 0

%p fi

%p end proc:

%p map(f, [$1..100]); # _Robert Israel_, Jun 09 2015

%t ppm[n_]:=If[PrimePowerQ[n],FactorInteger[n][[1,2]],0]; Array[ppm,110] (* _Harvey P. Dale_, Mar 03 2014 *)

%t a=Table[Limit[Sum[If[Mod[n, k] == 0, MoebiusMu[n/k]/(n/k)^(s - 1)/(1 - 1/n^(s - 1)), 0], {k, 1, n}], s -> 1], {n, 1, 105}];

%t Numerator[a]*Denominator[a] (* _Mats Granvik_, Jun 09 2015 *)

%t a = FullSimplify[Table[MangoldtLambda[n]/Log[n], {n, 1, 105}]]

%t Numerator[a]*Denominator[a] (* _Mats Granvik_, Jun 09 2015 *)

%o (PARI) {a(n) = my(t); if( n<1, 0, t = factor(n); if( [1,2] == matsize(t), t[1,2], 0))} /* _Michael Somos_, Aug 15 2012 */

%o (PARI) {a(n) = my(t); if( n<1, 0, if( t = isprimepower(n), t))} /* _Michael Somos_, Aug 15 2012 */

%o (Haskell)

%o a100995 n = f 0 n where

%o f e 1 = e

%o f e x = if r > 0 then 0 else f (e + 1) x'

%o where (x', r) = divMod x p

%o p = a020639 n

%o -- _Reinhard Zumkeller_, Mar 19 2013

%Y Cf. A028233, A069513, A010055.

%K nonn

%O 1,4

%A _Reinhard Zumkeller_, Nov 26 2004

%E Edited by _Daniel Forgues_ and _N. J. A. Sloane_, Aug 18 2009