login
Triangle read by rows: T(n,k) is the number of labeled 2-connected planar graphs with n nodes and k edges, n >= 3, n <= k <= 3(n-2).
9

%I #37 Nov 06 2018 12:41:09

%S 1,3,6,1,12,70,100,45,10,60,720,2445,3525,2637,1125,195,360,7560,

%T 46830,132951,210861,205905,123795,40950,5712,2520,84000,835800,

%U 3915240,10549168,18092368,20545920,15337560,7193760,1922760,223440,20160,997920,14757120,103692960,423918432,1119730032,2014030656,2516883516,2181661020,1285377660,491282820,109907280,10929600

%N Triangle read by rows: T(n,k) is the number of labeled 2-connected planar graphs with n nodes and k edges, n >= 3, n <= k <= 3(n-2).

%H Gheorghe Coserea, <a href="/A100960/b100960.txt">Rows n=3..126, flattened</a>

%H E. A. Bender, Z. Gao and N. C. Wormald, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v9i1r43">The number of labeled 2-connected planar graphs</a>, Electron. J. Combin., 9 (2002), #R43.

%H M. Bodirsky, C. Groepl and M. Kang, <a href="http://dx.doi.org/10.1016/j.tcs.2007.02.045">Generating Labeled Planar Graphs Uniformly At Random</a>, Theoretical Computer Science, Volume 379, Issue 3, 15 June 2007, Pages 377-386.

%e The triangle T(n,k), n>=3, k>=3 begins:

%e n\k [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

%e [3] 1;

%e [4] 0, 3, 6, 1;

%e [5] 0, 0, 12, 70, 100, 45, 10;

%e [6] 0, 0, 0, 60, 720, 2445, 3525, 2637, 1125, 195;

%e [7] ...

%o (PARI)

%o Q(n,k) = { \\ c-nets with n-edges, k-vertices

%o if (k < 2+(n+2)\3 || k > 2*n\3, return(0));

%o sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*

%o (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -

%o 4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));

%o };

%o A100960_ser(N) = {

%o my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)),

%o q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n,k)),'t))),

%o d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),

%o g2=intformal(t^2/2*((1+d)/(1+x)-1)));

%o serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n,'t),'x,'t)))*'x);

%o };

%o A100960_seq(N) = {

%o my(v=Vec(A100960_ser(N+2))); vector(#v, n, Vecrev(v[n]/t^(n+2)));

%o };

%o concat(A100960_seq(7)) \\ _Gheorghe Coserea_, Aug 09 2017

%Y Cf. A267411, A290326.

%Y Row sums give A096331. Main diagonal is A001710.

%K nonn,tabf

%O 3,2

%A _N. J. A. Sloane_, Jan 12 2005

%E More terms from _Michel Marcus_, Feb 10 2016