login
A100683
a(n) = a(n-1) + a(n-2) + a(n-3); a(0) = -1, a(1) = 2, a(2) = 2.
54
-1, 2, 2, 3, 7, 12, 22, 41, 75, 138, 254, 467, 859, 1580, 2906, 5345, 9831, 18082, 33258, 61171, 112511, 206940, 380622, 700073, 1287635, 2368330, 4356038, 8012003, 14736371, 27104412, 49852786, 91693569, 168650767, 310197122
OFFSET
0,2
COMMENTS
A tribonacci sequence.
From Greg Dresden and Veda Garigipati, Jun 14 2022: (Start)
For n >= 2, a(n+2) is the number of ways to tile this figure of length n with squares, dominoes, and "trominoes" (of length 3):
___
|_|_|___________
|_|_|_|_|_|_|_|_|
As an example, here is one of the 254 possible tilings of this figure of length 8 with squares, dominoes, and trominoes:
___
| |_|___________
|_|_____|_|___|_|. (End)
LINKS
Martin Burtscher, Igor Szczyrba, and RafaƂ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
S. Kak, The Golden Mean and the Physics of Aesthetics, arXiv:physics/0411195 [physics.hist-ph], 2004.
Eric Weisstein's World of Mathematics, Tribonacci Number
FORMULA
a(n+1) = 2*A001590(n+1) + A020992(n). - Creighton Dement, May 02 2005
O.g.f.: -(1-3x-x^2)/(1-x-x^2-x^3). - R. J. Mathar, Aug 22 2008
a(n) = T(n-2) + T(n) + T(n+1) where T(n) = A000073(n) the tribonacci sequence, for n >= 2. - Greg Dresden and Veda Garigipati, Jun 14 2022
MAPLE
a[0]:=-1:a[1]:=2:a[2]:=2:for n from 3 to 42 do a[n]:=a[n-1]+a[n-2]+a[n-3] od: seq(a[n], n=0..42);
MATHEMATICA
a[0] = -1; a[1] = a[2] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3]; Table[ a[n], {n, 0, 35}] (* Robert G. Wilson v, Dec 09 2004 *)
LinearRecurrence[{1, 1, 1}, {-1, 2, 2}, 34] (* Ray Chandler, Dec 08 2013 *)
PROG
(PARI) Vec(-(1-3*x-x^2)/(1-x-x^2-x^3) + O(x^70)) \\ Michel Marcus, Sep 25 2015
CROSSREFS
Cf. A000073.
Sequence in context: A179283 A234850 A127165 * A153940 A049905 A167348
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Dec 08 2004
EXTENSIONS
More terms from Emeric Deutsch, Farideh Firoozbakht and Robert G. Wilson v, Dec 08 2004
STATUS
approved