OFFSET
0,2
COMMENTS
Let F(x) = Product_{n >= 1} (1 + x^(4*n + 1))/(1 - x^(4*n + 3)). Let alpha = (1/2)*(3 - sqrt(13)). This sequence occurs as partial numerators in the simple continued fraction expansion of the real number F(alpha) = 1.34372 29374 22358 27049 ... = 1 + 1/(2 + 1/(1 + 1/(10 + 1/(35 + 1/(1 + 1/(118 + 1/(392 + 1/(1 + ...)))))))). - Peter Bala, Oct 17 2019
LINKS
Index entries for linear recurrences with constant coefficients, signature (4,-2,-1).
FORMULA
a(n) = 3*a(n-1) + a(n-2) + 3 for n>1, with a(0)=1, a(1)=2.
G.f.: Sum_{n>=1} a(n)*x^n/n = log((1-x)/(1-3*x-x^2)).
a(0)=1, a(1)=2, a(2)=10, a(n)=4*a(n-1)-2*a(n-2)-a(n-3). [Harvey P. Dale, May 06 2012]
MATHEMATICA
LinearRecurrence[{4, -2, -1}, {1, 2, 10}, 30] (* Harvey P. Dale, May 06 2012 *)
PROG
(PARI) a(n)=if(n==0, 1, n*polcoeff(log((1-x)/(1-3*x-x^2)+x*O(x^n)), n))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 29 2004
STATUS
approved