login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100074
Decimal expansion of Pi^2/(12*e^3).
2
0, 4, 0, 9, 4, 8, 2, 2, 2, 4, 2, 3, 4, 0, 0, 5, 6, 3, 5, 2, 1, 9, 4, 1, 8, 0, 4, 6, 3, 3, 8, 0, 7, 2, 4, 2, 0, 9, 3, 7, 2, 7, 2, 9, 9, 7, 4, 5, 6, 8, 9, 6, 1, 8, 4, 7, 7, 7, 8, 1, 7, 0, 0, 3, 0, 2, 3, 0, 9, 3, 4, 7, 4, 9, 3, 8, 1, 0, 9, 7, 9, 2, 5, 8, 5, 4, 7, 4, 0, 1, 3, 4, 3, 4, 3, 2, 8, 0, 3, 5, 9, 2, 5
OFFSET
0,2
LINKS
R. William Gosper, Mourad E. H. Ismail and Ruiming Zhang, On some strange summation formulas, Illinois J. Math., Vol. 37, No. 2 (1993), pp. 240-277.
Jonathan Sondow and Eric Weisstein, e, MathWorld.
Eric Weisstein's World of Mathematics, Series.
FORMULA
Equals Sum_{k >= 1} (-1)^(k+1) * cos(sqrt(k^2*Pi^2 - 9))/k^2 (Gosper et al., 1993). - Amiram Eldar, Jun 09 2021
More generally, it appears that Pi^2/(12*exp(x)) = Sum_{k >= 1} (-1)^(k+1)*cos(sqrt(k^2*Pi^2*x/3 - x^2))/k^2 for 0 <= x <= 3. The above identity is the case x = 3. - Peter Bala, Jun 20 2022
EXAMPLE
0.040948222423400563521941804633807242093727299745689...
MATHEMATICA
Join[{0}, RealDigits[Pi^2*Exp[-3]/12, 10, 120][[1]]] (* Amiram Eldar, Jun 09 2021 *)
PROG
(SageMath) numerical_approx(pi^2*exp(-3)/12, digits=120) # G. C. Greubel, Jun 08 2022
CROSSREFS
Cf. A002388 (Pi^2), A091933 (e^3), A092035 (Pi^2/e^2).
Sequence in context: A188777 A016683 A338107 * A330422 A035102 A242015
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Nov 02 2004
STATUS
approved