login
A100026
Consider all (2n+1)-digit palindromic primes of the form 10...0M0...01 (so that M is a palindrome with <= 2n-1 digits); a(n) = smallest such M.
9
0, 3, 3, 3, 5, 8, 323, 5, 8, 212, 3, 161, 8, 3, 242, 3, 8, 10901, 737, 161, 242, 333, 282, 6, 252, 474, 5, 12921, 8, 131, 18381, 6, 444, 6, 797, 606, 717, 15351, 464, 333, 626, 545, 13031, 161, 747, 191, 323, 636, 32523, 303, 282, 888, 686, 18981, 111, 15951, 12021
OFFSET
1,2
COMMENTS
Is this the same as "Longest palindromic proper substring of A100027(n) or A028989(n+1) that occurs only once in the decimal representation of A100027(n) or A028989(n+1), respectively"? - Felix Fröhlich, Apr 30 2022
MATHEMATICA
f[n_] := Block[{k = 0, t = Flatten[Join[{1}, Table[0, {n - 1}]]]}, While[s = Drop[t, Min[ -Floor[ Log[10, k]/2], 0]]; k != FromDigits[ Reverse[ IntegerDigits[k]]] || !PrimeQ[ FromDigits[ Join[s, IntegerDigits[k], Reverse[s]]]], k++ ]; k]; Table[ f[n], {n, 56}] (* Robert G. Wilson v, Nov 22 2004 *)
CROSSREFS
The corresponding palindromic primes are shown in A100027.
Sequence in context: A141695 A358452 A261450 * A350537 A367555 A100049
KEYWORD
nonn,base
AUTHOR
Harvey Dubner (harvey(AT)dubner.com), Nov 20 2004
EXTENSIONS
More terms from Robert G. Wilson v, Nov 22 2004
STATUS
approved