

A100015


Subfactorial primes: primes of the form !n + 1 or !n  1. Subfactorial or rencontres numbers or derangements !n = A000166.


2




OFFSET

1,1


REFERENCES

R. A. Brualdi and H. J. Ryser: Combinatorial Matrix Theory, 1992, Section 7.2, p. 202.
H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 23.


LINKS

Table of n, a(n) for n=1..5.
R. M. Dickau, Derangement diagrams.
H. Fripertinger, The Recontre Numbers, an online calculator.
Mehdi Hassani, Derangements and Applications, Journal of Integer Sequences, Vol. 6 (2003), #03.1.2


EXAMPLE

a(5) = 130850092279663 because the 5th subfactorial prime is !17  1 = 130850092279664  1 = 130850092279663. a(1) = 2 because !0 = !2 = 1, so !0 + 1 = !2 + 1 = 2.


CROSSREFS

Cf. A000166.
Sequence in context: A062581 A077520 A230061 * A317672 A042819 A218002
Adjacent sequences: A100012 A100013 A100014 * A100016 A100017 A100018


KEYWORD

nonn


AUTHOR

Jonathan Vos Post, Nov 18 2004


STATUS

approved



