login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099868
a(n) = 5*a(n-1) - a(n-2), a(0) = 3, a(1) = 25.
2
3, 25, 122, 585, 2803, 13430, 64347, 308305, 1477178, 7077585, 33910747, 162476150, 778470003, 3729873865, 17870899322, 85624622745, 410252214403, 1965636449270, 9417930031947, 45124013710465, 216202138520378, 1035886678891425, 4963231255936747
OFFSET
0,1
LINKS
A. F. Horadam, Pell Identities, Fib. Quart., Vol. 9, No. 3, 1971, pp. 245-252.
Tanya Khovanova, Recursive Sequences
FORMULA
|2*A099867(n) + a(n) - A003501(n+1)| = 20*A004254(n)
G.f.: (3 + 10*x) / (1 - 5*x + x^2). - Emeric Deutsch, Dec 03 2004
a(n) = (2^(-1-n)*((5-sqrt(21))^n*(-35+3*sqrt(21)) + (5+sqrt(21))^n*(35+3*sqrt(21)))) / sqrt(21). - Colin Barker, Mar 28 2017
MAPLE
a[0]:=3: a[1]:=25: for n from 2 to 30 do a[n]:=5*a[n-1]-a[n-2] od: seq(a[n], n=0..25);
MATHEMATICA
LinearRecurrence[{5, -1}, {3, 25}, 30] (* G. C. Greubel, Nov 20 2018 *)
PROG
(PARI) Vec((3+10*x) / (1-5*x+x^2) + O(x^30)) \\ Colin Barker, Mar 28 2017
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (3 +10*x)/(1-5*x+x^2))); // G. C. Greubel, Nov 20 2018
(Sage) s=((3+10*x)/(1-5*x+x^2)).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 20 2018
(GAP) a:=[3, 25];; for n in [3..30] do a[n]:=5*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Nov 20 2018
CROSSREFS
Sequence in context: A095664 A215773 A377555 * A243228 A112495 A034578
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Oct 28 2004
STATUS
approved