login
A099603
Row sums of triangle A099602, in which row n equals the inverse binomial transform of column n of the triangle of trinomial coefficients (A027907).
2
1, 2, 4, 12, 20, 64, 104, 336, 544, 1760, 2848, 9216, 14912, 48256, 78080, 252672, 408832, 1323008, 2140672, 6927360, 11208704, 36272128, 58689536, 189923328, 307302400, 994451456, 1609056256, 5207015424, 8425127936, 27264286720
OFFSET
0,2
FORMULA
a(n) = fibonacci(n+1)*2^[(n+1)/2]. a(n) = 6*a(n-2) - 4*a(n-4) for n>4. G.f.: (1+2*x-2*x^2)/(1-6*x^2+4*x^4).
EXAMPLE
Sequence begins: {1*1, 1*2, 2*2, 3*4, 5*4, 8*8, 13*8, 21*16, 34*16, ...}.
MATHEMATICA
LinearRecurrence[{0, 6, 0, -4}, {1, 2, 4, 12}, 30] (* Harvey P. Dale, Aug 09 2016 *)
PROG
(PARI) a(n)=fibonacci(n+1)*2^((n+1)\2)
CROSSREFS
Sequence in context: A218871 A121569 A319213 * A319615 A375742 A343865
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 25 2004
STATUS
approved