|
|
A099213
|
|
a(n) = a(n-1)+a(n-2)+3a(n-3), with a(0)=a(1)=a(2)=1.
|
|
3
|
|
|
1, 1, 1, 5, 9, 17, 41, 85, 177, 385, 817, 1733, 3705, 7889, 16793, 35797, 76257, 162433, 346081, 737285, 1570665, 3346193, 7128713, 15186901, 32354193, 68927233, 146842129, 312831941, 666455769, 1419814097, 3024765689, 6443947093
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Binomial transform is A099214. Binomial transform of A099212.
|
|
LINKS
|
Table of n, a(n) for n=0..31.
Index entries for linear recurrences with constant coefficients, signature (1,1,3).
|
|
FORMULA
|
G.f.: (1-x^2)/(1-x-x^2-3*x^3). [corrected by Michel Marcus, Aug 31 2022]
|
|
PROG
|
(Sage) from sage.combinat.sloane_functions import recur_gen3; it = recur_gen3(1, 1, 1, 1, 1, 3); [next(it) for i in range(32)] # Zerinvary Lajos, Jun 25 2008
(PARI) Vec((1-x^2)/(1-x-x^2-3*x^3) + O(x^30)) \\ Michel Marcus, Aug 31 2022
|
|
CROSSREFS
|
Cf. A099212, A099214.
Sequence in context: A147401 A062536 A324718 * A146067 A336139 A295627
Adjacent sequences: A099210 A099211 A099212 * A099214 A099215 A099216
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Paul Barry, Oct 06 2004
|
|
STATUS
|
approved
|
|
|
|