login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099142 a(n) = 6^n * T(n, 4/3) where T is the Chebyshev polynomial of the first kind. 4
1, 8, 92, 1184, 15632, 207488, 2757056, 36643328, 487039232, 6473467904, 86042074112, 1143628341248, 15200538791936, 202038000386048, 2685388609667072, 35692849740775424, 474411605904392192 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In general, r^n * T(n,(r+2)/r) has g.f. (1-(r+2)*x)/(1-2*(r+2)*x + r^2*x^2), e.g.f. exp((r+2)*x)*cosh(2*sqrt(r+1)*x), a(n) = Sum_{k=0..n} (r+1)^k*binomial(2n,2k) and a(n) = (1+sqrt(r+1))^(2*n)/2 + (1-sqrt(r+1))^(2*n)/2.

LINKS

Table of n, a(n) for n=0..16.

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (16,-36).

FORMULA

G.f.: (1-8*x)/(1-16*x+36*x^2);

E.g.f.: exp(8*x)*cosh(2*sqrt(7)*x).

a(n) = 6^n * T(n, 8/6) where T is the Chebyshev polynomial of the first kind.

a(n) = Sum_{k=0..n} 7^k * binomial(2n, 2k).

a(n) = (1+sqrt(7))^(2*n)/2 + (1-sqrt(7))^(2*n)/2.

a(0)=1, a(1)=8, a(n) = 16*a(n-1) - 36*a(n-2) for n > 1. - Philippe Deléham, Sep 08 2009

MATHEMATICA

LinearRecurrence[{16, -36}, {1, 8}, 20] (* Harvey P. Dale, Mar 09 2018 *)

PROG

(PARI) a(n) = 6^n*polchebyshev(n, 1, 4/3); \\ Michel Marcus, Sep 08 2019

CROSSREFS

Cf. A001541, A081294, A083884, A090965, A099140, A099141.

Sequence in context: A180903 A266427 A239644 * A007556 A194042 A231618

Adjacent sequences:  A099139 A099140 A099141 * A099143 A099144 A099145

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Sep 30 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 07:54 EDT 2020. Contains 336274 sequences. (Running on oeis4.)