login
a(n) = A033466(5n+2). Values of A033466(n) that differ from A058031(n+1)+1.
3

%I #11 Oct 16 2024 21:29:46

%S 10,650,986,18850,51410,114610,223450,79186,653050,1018810,1520210,

%T 2187250,610586,4153250,5527210,7216810,9267050,2345186,14644450,

%U 18076610,22079410,26712850,6407986,38126650,45042010,52858010

%N a(n) = A033466(5n+2). Values of A033466(n) that differ from A058031(n+1)+1.

%H G. C. Greubel, <a href="/A099024/b099024.txt">Table of n, a(n) for n = 0..2000</a>

%F G.f.: P(x)/(1-x^5)^5, where P(x) is a 24-degree polynomial.

%F a(n) = denominators of (2*n+1)/((n^2+(2*n+1)^2)*(1+(5*n+3)^2)). - _G. C. Greubel_, Oct 14 2024

%t Table[Denominator[(2*n+1)/((n^2+(2*n+1)^2)*(1+(5*n+3)^2))], {n,0,40}] (* _G. C. Greubel_, Oct 14 2024 *)

%o (Magma)

%o A099024:= func< n | Denominator((2*n+1)/((n^2+(2*n+1)^2)*((5*n+3)^2+1))) >;

%o [A099024(n): n in [0..40]]; // _G. C. Greubel_, Oct 14 2024

%o (SageMath)

%o def A099024(n): return denominator((2*n+1)/((n^2+(2*n+1)^2)*((5*n+3)^2+1)))

%o [A099024(n) for n in range(41)] # _G. C. Greubel_, Oct 14 2024

%Y Cf. A096431 (numerators).

%K nonn

%O 0,1

%A _Ralf Stephan_, Sep 25 2004