login
A099005
Numbers k such that 4*10^k + 6*R_k - 3 is prime, where R_k = 11...1 is the repunit (A002275) of length k.
2
1, 2, 3, 4, 6, 7, 8, 12, 23, 59, 75, 144, 204, 268, 760, 1216, 1430, 1506, 1509, 2804, 2924, 3201, 3305, 5753, 9268, 11279, 19677, 23414, 28627, 31362, 42299, 49119, 63747, 81767, 111443, 263720, 264791
OFFSET
1,2
COMMENTS
Also numbers k such that (14*10^k - 11)/3 is a prime number.
a(38) > 3*10^5. - Robert Price, Mar 30 2015
FORMULA
a(n) = A101730(n) + 1.
EXAMPLE
For n = 1, 2, 3, 4, 6, 7, 8 are members since 43, 463, 4663, 46663, 4666663, 46666663 and 466666663 are primes.
MATHEMATICA
Do[ If[ PrimeQ[(14*10^n - 11)/3], Print[n]], {n, 0, 10000}] (* Robert G. Wilson v, Dec 17 2004 *)
CROSSREFS
Cf. A101730.
Sequence in context: A070525 A283112 A174099 * A336739 A257648 A096360
KEYWORD
more,nonn
AUTHOR
Julien Peter Benney (jpbenney(AT)ftml.net), Nov 07 2004
EXTENSIONS
a(15) - a(21) from Robert G. Wilson v, Dec 22 2004
a(22) - a(25) from Robert G. Wilson v, Jan 17 2005
a(26)-a(27) from Kamada link by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(28)-a(29) from Kamada data by Robert Price, Dec 08 2010
a(30)-a(32) from Erik Branger, May 01 2013, submitted by Ray Chandler, Aug 16 2013
a(33)-a(34) from Kamada data by Robert Price, Mar 30 2015
a(35)-a(37) from Robert Price, May 31 2023
STATUS
approved