login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098453
Expansion of 1/sqrt(1 - 4*x - 12*x^2).
6
1, 2, 12, 56, 304, 1632, 9024, 50304, 283392, 1607168, 9167872, 52537344, 302239744, 1744412672, 10096263168, 58576306176, 340566147072, 1983765676032, 11574393962496, 67631502065664, 395710949228544, 2318088492023808, 13594307705438208, 79802741538422784, 468895276304695296
OFFSET
0,2
COMMENTS
Central coefficient of (1 + 2x + 4x^2)^n.
a(n) is the number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps can have 2 colors and the U steps can have 4 colors. - N-E. Fahssi, Mar 31 2008
a(n) is the number of 2 X n matrices with terms in {1,2,3}, same number of 1's in top and bottom rows, and no constant columns. For example, a(1)=2 counts the transposes of (2,3) and (3,2). The number of such matrices with k 1's in each row is binomial(n,2k) [choose columns containing 1's] * binomial(2k,k) [place 1's in these columns] * 2^n [place 2 or 3 in the topmost available spot in each column and the other of 2,3 in the other spot if not occupied by a 1]. - David Callan, Aug 25 2009
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
FORMULA
G.f.: 1/sqrt((1+2*x)*(1-6*x)).
E.g.f.: exp(2*x)*BesselI(0, 4*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2*(n-k), n)*3^k.
D-finite with recurrence: a(n+2) = ((4*n+6)*a(n+1) + 12*(n+1)*a(n))/(n+2); a(0)=1, a(1)=2. - Sergei N. Gladkovskii, Jul 30 2012
a(n) ~ sqrt(3)*6^n/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
G.f.: G(0), where G(k) = 1 + 2*x*(1+3*x)*(4*k+1)/( 2*k+1 - x*(1+3*x)*(2*k+1)*(4*k+3)/(x*(1+3*x)*(4*k+3) + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jun 30 2013
a(n) = (-2)^n*hypergeom([-n,1/2], [1], 4). - Peter Luschny, Apr 26 2016
a(n) = 2^n*GegenbauerC(n, -n, -1/2)). - Peter Luschny, May 08 2016
MAPLE
seq(simplify((-2)^n*hypergeom([-n, 1/2], [1], 4)), n=0..20); # Peter Luschny, Apr 26 2016
T := proc(n, k) option remember;
if n < 0 or k < 0 then 0
elif n = 0 then binomial(2*k, k)
else 2*(T(n-1, k+1) - T(n-1, k)) fi end:
a := n -> T(n, 0): seq(a(n), n=0..20); # Peter Luschny, Aug 23 2017
MATHEMATICA
Table[SeriesCoefficient[1/Sqrt[1-4*x-12*x^2], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *)
PROG
(PARI) x='x+O('x^66); Vec(1/sqrt(1-4*x-12*x^2)) \\ Joerg Arndt, May 11 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 08 2004
STATUS
approved