%I #8 Jan 01 2017 17:31:53
%S 0,1,7,64,567,5041,44800,398161,3538647,31449664,279508327,2484125281,
%T 22077619200,196214447521,1743852408487,15498457228864,
%U 137742262651287,1224181906632721,10879894897043200,96694872166756081
%N Unsigned member r=-7 of the family of Chebyshev sequences S_r(n) defined in A092184.
%C ((-1)^(n+1))*a(n) = S_{-7}(n), n>=0, defined in A092184.
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,8,-1).
%F a(n)= 2*(T(n, 9/2)-(-1)^n)/11, with twice Chebyshev's polynomials of the first kind evaluated at x=9/2: 2*T(n, 9/2)=A056918(n)=((9+sqrt(77))^n + (9-sqrt(77))^n)/2^n.
%F a(n)= 9*a(n-1)-a(n-2)+2*(-1)^(n+1), n>=2, a(0)=0, a(1)=1.
%F a(n)= 8*a(n-1) + 8*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=7.
%F G.f.: x*(1-x)/((1+x)*(1-9*x+x^2)) = x*(1-x)/(1-8*x-8*x^2+x^3) (from the Stephan link, see A092184).
%t LinearRecurrence[{8,8,-1},{0,1,7},20] (* _Harvey P. Dale_, Jan 01 2017 *)
%K nonn,easy
%O 0,3
%A _Wolfdieter Lang_, Oct 18 2004