login
Let M={{0,1,0},{0,0,1},{1,1,0}}; a[n_]:=M.a[n-1]-a[n-1].M; a[0]:={{0,1,1},{1,1,2},{1,2,3}}.
0

%I #4 Mar 30 2012 17:34:14

%S 1,1,2,1,2,3,1,2,3,1,1,2,2,2,1,1,1,3,4,3,2,2,0,5,6,5,4,4,2,8,11,8,4,

%T 10,1,12,19,12,2,14,6,20,27,8,13,16,23,32,47,14,7,46,8,30,79,30,16,53,

%U 48,44,93,25,31,37,143,74,137,34,17,163,80,3,211,3,160,146,234,31,177,337

%N Let M={{0,1,0},{0,0,1},{1,1,0}}; a[n_]:=M.a[n-1]-a[n-1].M; a[0]:={{0,1,1},{1,1,2},{1,2,3}}.

%C Minimal Pisot 3 X 3 Commutator Markov sequence.

%t (* Minimal Pisot 3 X 3 Commutator Markov sequence*) digits=16 M={{0, 1, 0}, {0, 0, 1}, {1, 1, 0}} A[n_]:=M.A[n-1]-A[n-1].M; A[0]:={{0, 1, 1}, {1, 1, 2}, {1, 2, 3}}; (* flattened sequence of 3 X 3 matrices made with a Minimal Pisot recurrence*) b=Flatten[Table[M.A[n], {n, 0, digits}]] Abs[b] Dimensions[b][[1]] ListPlot[b, PlotJoined->True]

%K nonn

%O 0,3

%A _Roger L. Bagula_, Sep 11 2004