login
Dimensions of spaces of cusp forms.
0

%I #15 Jun 06 2019 08:55:07

%S 1,1,1,2,2,3,4,4,4,5,5,5,6,7,7,8,8,8,9,9,9,12,12,12,13,13,13,14,14,15,

%T 16,16,16,17,17,17,18,19,19,20,20,20,21,21,21,24,24,24,25,25,25,26,26,

%U 27,28,28,28,29,29,29,30,31,31,32,32,32,33,33,33,36,36,36,37,37,37,38,38,39,40,40,40,41,41,41,42,43,43,44,44,44,45,45,45,48,48,48,49

%N Dimensions of spaces of cusp forms.

%D H. Petersson, Modulfunktionen und Quadratische Formen, Springer-Verlag, 1982; p. 186.

%H <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).

%F a(n+24m) = a(n) + 12m for m >= 1.

%F a(n)= +a(n-1) +a(n-24) -a(n-25). - _R. J. Mathar_, Oct 01 2011

%F G.f.: x^4*(1 + x^3 + x^5 + x^6 + x^9 + x^12 + x^13 + x^15 + x^18 + 3*x^21) / ((1 - x)^2*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 + x^4)*(1 + x^4)*(1 - x^4 + x^8)). - _Colin Barker_, Jun 06 2019

%t LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1},{1,1,1,2,2,3,4,4,4,5,5,5,6,7,7,8,8,8,9,9,9,12,12,12,13},120] (* _Harvey P. Dale_, May 11 2016 *)

%o (PARI) Vec(x^4*(1 + x^3 + x^5 + x^6 + x^9 + x^12 + x^13 + x^15 + x^18 + 3*x^21) / ((1 - x)^2*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 + x^4)*(1 + x^4)*(1 - x^4 + x^8)) + O(x^40)) \\ _Colin Barker_, Jun 06 2019

%K nonn,easy

%O 4,4

%A _N. J. A. Sloane_, Aug 27 2004