login
A097529
Least k such that k*P(n)#-P(n+5) and k*P(n)#+P(n+5) are both primes with P(i)=i-th prime and P(i)#=i-th primorial.
0
8, 4, 2, 2, 1, 2, 5, 1, 34, 13, 60, 9, 38, 43, 2, 1, 23, 96, 33, 2, 151, 59, 22, 31, 327, 84, 45, 47, 47, 36, 34, 62, 589, 648, 193, 150, 1181, 359, 616, 22, 132, 129, 402, 135, 154, 933, 111, 46, 196, 285, 520, 220, 387, 35, 102, 323, 1109, 833, 25, 292, 300, 1326, 1093
OFFSET
1,1
MATHEMATICA
Primorial[n_] := Product[ Prime[i], {i, n}]; f[n_] := Block[{k = 1, p = Primorial[n], q = Prime[n + 5]}, While[k*p - q < 2 || !PrimeQ[k*p - q] || !PrimeQ[k*p + q], k++ ]; k]; Table[ f[n], {n, 63}] (* Robert G. Wilson v, Aug 31 2004 *)
CROSSREFS
Sequence in context: A131916 A131606 A033328 * A114321 A154434 A222301
KEYWORD
easy,nonn
AUTHOR
Pierre CAMI, Aug 27 2004
EXTENSIONS
More terms from Robert G. Wilson v, Aug 31 2004
STATUS
approved