login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097207 Triangle read by rows: T(n,k) = binomial(n,k) + 2*binomial(n,k-1). 5
1, 1, 3, 1, 4, 5, 1, 5, 9, 7, 1, 6, 14, 16, 9, 1, 7, 20, 30, 25, 11, 1, 8, 27, 50, 55, 36, 13, 1, 9, 35, 77, 105, 91, 49, 15, 1, 10, 44, 112, 182, 196, 140, 64, 17, 1, 11, 54, 156, 294, 378, 336, 204, 81, 19, 1, 12, 65, 210, 450, 672, 714, 540, 285, 100, 21, 1, 13, 77, 275, 660 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Reinhard Zumkeller, Rows n=0..150 of triangle, flattened

H. W. Gould, Power sum identities for arbitrary symmetric arrays, SIAM J. Appl. Math., 17 (1969), 307-316.

Index entries for triangles and arrays related to Pascal's triangle

FORMULA

T(n,k) = A029635(n+1,k), 0 <= k <= n. - Reinhard Zumkeller, Mar 12 2012

EXAMPLE

Triangle begins:

1

1 3

1 4 5

1 5 9 7

1 6 14 16 9

MATHEMATICA

T[n_, k_] := Binomial[n, k] + 2Binomial[n, k - 1]; Flatten[ Table[ T[n, k], {n, 0, 10}, {k, 0, n}]] (* Robert G. Wilson v, Sep 21 2004 *)

PROG

(Haskell)

a097207 n k = a097207_tabl !! n !! k

a097207_row n = a097207_tabl !! n

a097207_tabl = map init $ tail a029635_tabl

-- Reinhard Zumkeller, Mar 12 2012

CROSSREFS

Cf. A029637, A110813 (row-reversed).

Sequence in context: A298890 A016473 A029637 * A266101 A118469 A198553

Adjacent sequences:  A097204 A097205 A097206 * A097208 A097209 A097210

KEYWORD

nonn,tabl,easy

AUTHOR

N. J. A. Sloane, Sep 21 2004

EXTENSIONS

More terms from Robert G. Wilson v, Sep 21 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 01:42 EDT 2018. Contains 316431 sequences. (Running on oeis4.)