login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096374
Number of partitions of n such that the least part occurs with even multiplicity.
3
0, 1, 0, 3, 1, 5, 4, 11, 8, 19, 19, 35, 36, 59, 65, 104, 115, 168, 196, 276, 321, 440, 521, 694, 821, 1072, 1277, 1644, 1957, 2477, 2959, 3705, 4411, 5472, 6516, 8014, 9524, 11620, 13789, 16724, 19798, 23860, 28202, 33815, 39864, 47579, 55979, 66520, 78080
OFFSET
1,4
COMMENTS
Also number of partitions of n such that the difference between the two largest distinct parts is even (it is assumed that 0 is a part in each partition). Example: a(6)=5 because we have [6],[5,1],[4,2],[2,2,2] and [3,1,1,1]. - Emeric Deutsch, Apr 04 2006
LINKS
FORMULA
G.f.: Sum_{m>=1} ((x^(2*m)/(1+x^m))/Product_{i>=m}(1-x^i)).
a(n) + A096375(n) = A000041(n).
EXAMPLE
a(6) = 5 because we have [4,1,1], [3,3], [2,2,1,1], [2,1,1,1,1] and [1,1,1,1,1,1].
MAPLE
g:=sum(x^(2*k)/(1+x^k)/product(1-x^j, j=k..70), k=1..50): gser:=series(g, x=0, 50): seq(coeff(gser, x, n), n=1..48); # Emeric Deutsch, Apr 04 2006
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0 or i<1, 0, `if`(irem(n, i, 'r')=0
and irem(r, 2)=0, 1, 0)+ add(b(n-i*j, i-1), j=0..n/i))
end:
a:= n-> b(n, n):
seq(a(n), n=1..50); # Alois P. Heinz, Feb 27 2013
MATHEMATICA
f[n_] := Block[{p = IntegerPartitions[n], l = PartitionsP[n], c = 0, k = 1}, While[k < l + 1, If[ EvenQ[ Count[ p[[k]], p[[k]][[ -1]] ]], c++ ]; k++ ]; c]; Table[ f[n], {n, 50}] (* Robert G. Wilson v, Jul 23 2004 *)
b[n_, i_] := b[n, i] = If[n == 0 || i < 1, 0, {q, r} = QuotientRemainder[n, i]; If[r == 0 && Mod[q, 2] == 0, 1, 0] + Sum[b[n - i*j, i-1], {j, 0, n/i}]] ; a[n_] := b[n, n]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
Table[Count[IntegerPartitions[n], _?(EvenQ[Length[Split[#][[-1]]]]&)], {n, 50}] (* Harvey P. Dale, Jun 02 2019 *)
PROG
(PARI) {q=sum(m=1, 100, (x^(2*m)/(1+x^m))/prod(i=m, 100, 1-x^i, 1+O(x^60)), 1+O(x^60)); for(n=1, 48, print1(polcoeff(q, n), ", "))} \\ Klaus Brockhaus, Jul 21 2004
CROSSREFS
Sequence in context: A082129 A363233 A159970 * A007085 A094648 A096975
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jul 19 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v and Klaus Brockhaus, Jul 21 2004
STATUS
approved