%I #8 Nov 27 2017 11:04:33
%S 1,17,163,1809,21251,263843,3395015,44916497,607041379,8345319267,
%T 116335834055,1640651321763,23365271704711,335556407724359,
%U 4854133484555663,70666388112940817,1034529673001901731
%N a(n) = Sum_{k=1..n} C(n,k)^4 where C(n,k) is binomial(n,k).
%H Vincenzo Librandi, <a href="/A096192/b096192.txt">Table of n, a(n) for n = 1..200</a>
%F a(n) ~ 2^(4*n + 1/2) / (Pi*n)^(3/2). - _Vaclav Kotesovec_, Nov 27 2017
%t Table[Sum[Binomial[n, k-1]^4, {k, 0, n}], {n, 1, 25}] (* _Vincenzo Librandi_, May 03 2013 *)
%Y Equals A005260(n) - 1.
%K nonn
%O 1,2
%A _Gerald McGarvey_, Jul 25 2004