login
Decimal expansion of lim_{n->oo} B(2n,8)/(B(2n)*64^n) (see comment for B(n,k) definition).
1

%I #16 Apr 29 2023 06:55:13

%S 1,0,4,1,8,4,1,8,8,8,4,0,1,9,2,1,7,8,2,2,2,8,4,5,0,8,0,5,4,1,3,5,9,2,

%T 9,9,4,3,8,7,8,8,0,5,8,0,3,3,0,2,1,7,9,9,4,7,7,3,0,9,4,3,0,4,4,2,9,2,

%U 3,3,3,9,4,3,9,5,5,6,3,7,8,2,9,3,9,2,5,8,0,3,3,2,6,2,3,1,1,3,1,6,2,3,3,2,1

%N Decimal expansion of lim_{n->oo} B(2n,8)/(B(2n)*64^n) (see comment for B(n,k) definition).

%C B(n,p) = Sum_{i=0..n} (p^i * Sum_{j=0..i} binomial(n,j)*B(j)) where B(k) is the k-th Bernoulli number.

%F Equals (16-sqrt(2))/14.

%e 1.04184188840192178222845080541359299438788058033021...

%t RealDigits[(16 - Sqrt[2])/14, 10, 100][[1]] (* _Amiram Eldar_, May 08 2022 *)

%o (PARI) (16-sqrt(2))/14

%Y Cf. A027641, A027642, A096045, A096046, A096047, A096048, A096049, A096050.

%K cons,nonn

%O 1,3

%A _Benoit Cloitre_, Jun 17 2004