login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095349
Total number of edges in all trees on n nodes.
0
0, 1, 2, 6, 12, 30, 66, 161, 376, 954, 2350, 6061, 15612, 41067, 108374, 289800, 778064, 2105739, 5723190, 15638235, 42890100, 118098876, 326217628, 903897631, 2511285360, 6994836250, 19527701960, 54632961864, 153147864380, 430095282258, 1209924870900
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Graph Edge
FORMULA
a(n) = (n-1)*A000055(n). - Vladeta Jovovic, Jun 05 2004
O.g.f.: x^2 d/dx(A(x)-1)/x where A(x) is the o.g.f. for A000055. - Geoffrey Critzer, Jul 06 2020
MATHEMATICA
nn = 25; f[x_] := Sum[a[n] x^n, {n, 0, nn}]; sol = SolveAlways[0 == Series[
f[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x];
r[x_] := Sum[a[n] x^n, {n, 0, nn}] /. sol; Drop[Level[CoefficientList[
Series[x^2 D[1/x (r[x] - 1/2 (r[x]^2 - r[x^2])), x], {x, 0, nn}],
x], {2}], 1] (* Geoffrey Critzer, Jul 06 2020 *)
CROSSREFS
Cf. A055543.
Sequence in context: A161507 A335711 A032177 * A291518 A291445 A320664
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jun 03 2004
STATUS
approved