The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A095177 E.g.f.: exp(x)/(1-x)^5. 13

%I #29 Jul 27 2021 21:21:07

%S 1,6,41,316,2721,25946,271801,3105936,38474561,513796366,7360674441,

%T 112632827396,1833790646881,31656637715106,577636838177561,

%U 11109543835539736,224635867973671041,4764236394052127126

%N E.g.f.: exp(x)/(1-x)^5.

%C Sum_{k = 0..n} A094816(n,k)*x^k give A000522(n), A001339(n), A082030(n), A095000(n) for x = 1, 2, 3, 4 respectively.

%C From _Peter Bala_, Jul 10 2008: (Start)

%C a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). See A000522 for further properties of difference divisibility sequences.

%C Recurrence relation: a(0) = 1, a(1) = 6, a(n) = (n+5)*a(n-1) - (n-1)*a(n-2) for n >= 2. Let p_4(n) = n^4+2*n^3+5*n^2+1 = n^(4)-4*n^(3)+6*n^(2)-4*n^(1)+1, where n^(k) denotes the rising factorial n*(n+1)*...*(n+k-1). The polynomial p_4(n) is an example of a Poisson-Charlier polynomial c_k(x;a) at k = 4, x = -n and a = -1.

%C The sequence b(n) := n!*p_4(n+1) = A001688(n) satisfies the same recurrence as a(n) but with the initial conditions b(0) = 9, b(1) = 53. This leads to the finite continued fraction expansion expansion a(n)/b(n) = 1/(9-1/(6-1/(7-2/(8-...-(n-1)/(n+5))))).

%C Lim n -> infinity a(n)/b(n) = e/24 = 1/(9-1/(6-1/(7-2/(8-...-n/((n+6)-...))))).

%C a(n) = b(n) * sum {k = 0..n} 1/(k!*p_4(k)*p_4(k+1)) - since the rhs satisfies the above recurrence with the same initial conditions. Hence e = 24 * sum {k = 0..inf} 1/(k!*p_4(k)p_4(k+1)).

%C For sequences satisfying the more general recurrence a(n) = (n+1+r)*a(n-1) - (n-1)*a(n-2), which yield series acceleration formulas for e/r! that involve the Poisson-Charlier polynomials c_r(-n;-1), refer to A000522 (r = 0), A001339 (r=1), A082030 (r=2), A095000 (r=3). (End)

%H Vincenzo Librandi, <a href="/A095177/b095177.txt">Table of n, a(n) for n = 0..200</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Poisson-CharlierPolynomial.html">Poisson-Charlier polynomial</a>

%F a(n) = Sum_{k = 0..n} A094816(n, k)*5^k.

%F a(n) = Sum_{k=0..n} binomial(n, k)*(k+4)!/4!.

%F G.f.: 1/Q(0), where Q(k) = 1 - x - x*(k+5)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - _Sergei N. Gladkovskii_, Apr 22 2013

%F a(n) ~ n! *exp(1)*n^4/24. - _Vaclav Kotesovec_, Jun 21 2013

%F a(n) = 2F0(5,-n;;-1). - _Benedict W. J. Irwin_, May 27 2016

%F First-order recurrence: P(n-1)*a(n) = n*P(n)*a(n-1) + 1 with a(0) = 1, where P(n) = n^4 + 6*n^3 + 17*n^2 + 20*n + 9 = A094793(n). - _Peter Bala_, Jul 26 2021

%t CoefficientList[Series[Exp[x]/(1-x)^5, {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Jun 21 2013 *)

%t Table[HypergeometricPFQ[{5, -n}, {}, -1], {n, 0, 20}] (* _Benedict W. J. Irwin_, May 27 2016 *)

%o (PARI) a(n) = sum(k=0,n, binomial(n, k)*(k+4)!/4! ); \\ _Joerg Arndt_, Apr 22 2013

%Y Cf. A000522, A001339, A082030, A095000, A096307, A096341, A094793.

%K nonn

%O 0,2

%A _Philippe Deléham_, Jun 20 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 19:25 EDT 2024. Contains 372494 sequences. (Running on oeis4.)