login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094723 a(n) = Pell(n+2) - 2^n. 3
1, 3, 8, 21, 54, 137, 344, 857, 2122, 5229, 12836, 31413, 76686, 186833, 454448, 1103921, 2678674, 6494037, 15732284, 38089677, 92173782, 222961529, 539145416, 1303349513, 3150038746, 7611815613, 18390447188, 44426264421, 107310084894 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of A052955.

The sequence b(n) = 2*a(n), n >= -1, is an elephant sequence, see A175654. For the corner squares 24 A[5] vectors, with decimal values between 23 and 464, lead to the b(n) sequence. For the central square these vectors lead to the companion sequence A175658. - Johannes W. Meijer, Aug 15 2010

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-3,-2).

FORMULA

G.f.: (1 - x - x^2)/((1-2*x)*(1 - 2*x - x^2)).

a(n) = ((1+sqrt(2))^n*(3*sqrt(2)/4+1) - (3*sqrt(2)/4-1)*(1-sqrt(2))^n) - 2^n.

a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3). - Vincenzo Librandi, Jun 24 2012

MATHEMATICA

LinearRecurrence[{4, -3, -2}, {1, 3, 8}, 40] (* Vincenzo Librandi, Jun 24 2012 *)

PROG

(MAGMA) I:=[1, 3, 8]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 24 2012

CROSSREFS

Cf. A000129.

Sequence in context: A318567 A103446 A218482 * A127358 A077849 A135473

Adjacent sequences:  A094720 A094721 A094722 * A094724 A094725 A094726

KEYWORD

easy,nonn

AUTHOR

Paul Barry, May 23 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 03:18 EDT 2020. Contains 334812 sequences. (Running on oeis4.)