login
A094569
Associated with alternating row sums of array in A094568.
2
2, 11, 78, 532, 3649, 25008, 171410, 1174859, 8052606, 55193380, 378301057, 2592914016, 17772097058, 121811765387, 834910260654, 5722560059188, 39223010153665, 268838511016464, 1842646566961586, 12629687457714635, 86565165637040862, 593326472001571396
OFFSET
0,1
LINKS
Clark Kimberling, Orderings of products of Fibonacci numbers, Fibonacci Quarterly, 42:1 (2004), pp. 28-35.
FORMULA
a(n) = F(4n+3) - a(n-1) for n >= 1, where a(0) = 2.
a(n) = (Fib(4n+5) + (-1)^n )/3. - Ralf Stephan, Dec 04 2004
a(n) = (-1)^n * sum((-1)^k*Fibonacci(4*k+3), k=0..n). - Gary Detlefs, Jan 22 2013
a(n) = 6*a(n-1) + 6*a(n-2) - a(n-3). - Colin Barker, Nov 19 2014
G.f.: -(x-2) / ((x+1)*(x^2-7*x+1)). - Colin Barker, Nov 19 2014
EXAMPLE
Obtain 11,78,532 from a(0)=2 and Fibonacci numbers 13,89,610: 11=13-2, 78=89-11, 532=610-78.
PROG
(PARI) Vec(-(x-2)/((x+1)*(x^2-7*x+1)) + O(x^100)) \\ Colin Barker, Nov 19 2014
(PARI) vector(30, n, n--; (fibonacci(4*n+5) + (-1)^n)/3) \\ Michel Marcus, Nov 19 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 12 2004
EXTENSIONS
More terms from Colin Barker, Nov 19 2014
STATUS
approved