%I #12 May 01 2017 16:13:08
%S 0,2,12,60,288,1368,6480,30672,145152,686880,3250368,15380928,
%T 72783360,344414592,1629787392,7712236800,36494696448,172694757888,
%U 817200368640,3867033664512,18298999775232,86591796664320,409756781334528
%N a(n) = rightmost term of M^n * [1 0 0], with M = the 3 X 3 matrix [1 -1 0 / -1 3 -2 / 0 -2 2].
%C Left term in M^n * [1 0 0] = A094433(n). a(n)/ a(n-1) tends to 3 + sqrt(3) = 4.732050807...; e.g. a(9)/a(8) = 145152/30672 = 4.732394... 3. a(n)/ A094433(n) tends to 1 + sqrt(3); e.g. a(9)/A094433(9) = 145152/53136 = 2.731707... 4. M = a "stiffness matrix" with k1 = 1, k2 = 2, relating to Hooke's law governing the force on the nodes of compressed or stretched springs with stiffness constants k1, k2. (see A094433, A094431).
%D Carl D. Meyer, "Matrix Analysis and Applied Linear Algebra", SIAM, 2000, p. 86-87.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-6).
%F a(n) = 6*a(n-1)-6*a(n-2). G.f.: 2*x^2/(1-6*x+6*x^2). [_Colin Barker_, Sep 05 2012]
%e a(4) = 60 since M^4 * [1 0 0] = [24 -84 60].
%t Table[(MatrixPower[{{1, -1, 0}, {-1, 3, -2}, {0, -2, 2}}, n].{1, 0, 0})[[3]], {n, 24}] (* _Robert G. Wilson v_ *)
%t LinearRecurrence[{6,-6},{0,2},30] (* _Harvey P. Dale_, May 01 2017 *)
%Y Cf. A094431, A094431, A094433.
%K nonn,easy
%O 1,2
%A _Gary W. Adamson_, May 02 2004
%E More terms from _Robert G. Wilson v_, May 08 2004