login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094335
Largest right-truncatable prime number in base n if 1 is considered as a prime (written in base 10).
3
47, 71, 2039, 2437, 108863, 33487, 4497359, 1355840309, 1979339339, 6774006887, 2081628860747539, 122311273757, 6525460043032393259, 927920056668659, 1429175974256442233, 4928397730238375565449, 5228233855704101657
OFFSET
2,1
LINKS
I. O. Angell, and H. J. Godwin, On Truncatable Primes, Math. Comput. 31, 265-267, 1977.
Domingo Gómez-Pérez, Alina Ostafe, Min Sha, The Arithmetic of Consecutive Polynomial Sequences over Finite Fields, arXiv:1509.01936 [math.NT], 2015.
A. J. van der Poorten, A quote, Math. Intelligencer 7(2) (1985), 40.
EXAMPLE
Example for n=10: 1,19,197,1979,19793,197933,1979339,19793393,197933933 and 1979339339 are all prime numbers.
PROG
(PARI) a(n) = my(S, m, D); D=select(x->(gcd(x, n)==1), vector(n-1, j, j)); S=concat([1], select(ispseudoprime, vector(n, j, j))); while(#S, m=vecmax(S); S=concat(vector(#D, j, select(ispseudoprime, vector(#S, i, S[i]*n+D[j])))); ); m /* Max Alekseyev, Dec 06 2014 */
CROSSREFS
Cf. A023107 (where 1 is not considered to be prime).
Sequence in context: A033231 A139923 A097458 * A300165 A316351 A282633
KEYWORD
base,nonn
AUTHOR
Martin Raab, Jun 04 2004
STATUS
approved