login
A093728
Decimal expansion of 2E(2i sqrt(2)), where E(k) is the complete elliptic integral of the 2nd kind.
2
6, 6, 8, 2, 4, 4, 6, 6, 1, 0, 2, 7, 7, 6, 2, 9, 1, 1, 5, 0, 6, 4, 7, 5, 1, 1, 6, 2, 5, 3, 0, 0, 9, 8, 1, 1, 9, 7, 0, 0, 4, 9, 1, 3, 3, 6, 1, 9, 4, 5, 8, 8, 5, 5, 1, 6, 4, 6, 4, 8, 0, 1, 9, 8, 2, 4, 6, 2, 9, 2, 7, 0, 9, 5, 2, 3, 2, 8, 4, 8, 0, 4, 0, 1, 2, 9, 5, 5, 3, 2, 4, 0, 5, 8, 1, 9, 9, 1, 0, 6, 4, 5
OFFSET
1,1
COMMENTS
Arc length of the trifolium r = a*cos(3*theta).
LINKS
Eric Weisstein's World of Mathematics, Trifolium
FORMULA
Equals 2*A249491. - Altug Alkan, Oct 02 2018
EXAMPLE
6.68244661027762911506475116253009811970049133619458855164648...
MAPLE
Re(evalf(2*EllipticE(2*I*sqrt(2)), 120)); # Vaclav Kotesovec, Apr 22 2015
MATHEMATICA
RealDigits[ N[ 2*EllipticE[-8], 102]][[1]] (* Jean-François Alcover, Oct 29 2012 *)
PROG
(PARI) 2*intnum(t=0, Pi/2, sqrt(1+8*sin(t)^2)) \\ Charles R Greathouse IV, Aug 15 2015
CROSSREFS
Cf. A249491.
Sequence in context: A279005 A198987 A198751 * A324001 A205863 A132711
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Apr 13 2004
STATUS
approved