login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093585
Numerators of even raw moments in the distribution of a triangle picked at random from points on the circumference of a unit circle.
2
1, 3, 45, 105, 17325, 189189, 1072071, 6235515, 4732755885, 56968357875, 1387749197835, 1066617152055, 211545735157575, 2639940564777075, 33133947904855125, 208964764786619655, 677672732203007541165, 8617464674207794857375, 219904931871450765064125, 703573951001456048889375, 144457803619618955957966475
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Circle Triangle Picking
FORMULA
Conjecture: the moments are sqrt(3)*Gamma(n+2/3)*Gamma(n+1/3)*(27/16)^n/(2*Pi*(n!)^2). - Robert Israel, Jan 01 2018
EXAMPLE
1, 3/(2*Pi), 3/8, 35/(32*Pi), 45/128, 3003/(2560*Pi), ...
MAPLE
M := n -> int(int( ( 2*sin(u/2)*sin(v/2)*sin((u-v)/2) )^(2*n), u=0..Pi), v=0..2*Pi) / 2 / Pi^2; # Max Alekseyev, Jun 18 2011
MATHEMATICA
a[n_] := Integrate[ Integrate[ (2*Sin[u/2]*Sin[v/2]* Sin[(u-v)/2])^(2*n), {u, 0, Pi}], {v, 0, 2*Pi}]/(2*Pi^2) // Numerator; Table[ Print[an = a[n]]; an, {n, 0, 20}] (* Jean-François Alcover, Nov 09 2012, after Max Alekseyev *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Eric W. Weisstein, Apr 01 2004
EXTENSIONS
More terms from Max Alekseyev, Jun 18 2011
STATUS
approved