

A093245


a(n) is the lesser term of the smallest twin prime pair such that if P=(a(n)^2+n)^2+n, then P and P+2 are also twin primes. a(n) is 0 if no such pair exists.


2



3, 71, 0, 419, 71, 0, 5, 11, 0, 10271, 24977, 0, 29, 6869, 0, 3, 9011, 0, 881, 29, 0, 641, 17, 0, 41, 107, 0, 17, 179, 0, 5, 2801, 0, 10859, 11, 0, 59, 40637, 0, 461, 17957, 0, 431, 431, 0, 24977, 5, 0, 12611, 599, 0, 9431, 1091, 0, 107, 5867, 0, 3, 15731, 0, 5, 659, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Note that either P or P+2 is composite whenever n is a multiple of 3 and in this case a(n)=0.
Conjecture: a(n) = 0 only if n is a multiple of 3. Note that this implies the existence of infinitely many twin primes.  Robert Israel, Apr 15 2021


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000


EXAMPLE

a(5) = 71: 71 and 73 are twin primes. (71^2+5)^2+5 = 25462121. 25462121 and 25462123 are also twin primes.


MAPLE

T:= [3, op(select(t > isprime(t) and isprime(t+2), [seq(i, i=5..10^7, 6)]))]:
f:= proc(n) local t, p;
if n mod 3 = 0 then return 0 fi;
for t in T do
p:= (t^2+n)^2+n;
if isprime(p) and isprime(p+2) then return t fi
od;
FAIL
end proc:
map(f, [$1..100]); # Robert Israel, Apr 15 2021


MATHEMATICA

f[n_] := Block[{k = 2}, If[ Mod[n, 3] != 0, While[ p = Prime[k]; q = (p^2 + n)^2 + n; !PrimeQ[p + 2]  !PrimeQ[q]  !PrimeQ[q + 2], k++ ]; p, 0]]; Table[ f[n], {n, 63}] (* Robert G. Wilson v, Sep 02 2004 *)


CROSSREFS

Cf. A093189.
Sequence in context: A210920 A140048 A135951 * A108231 A130894 A254665
Adjacent sequences: A093242 A093243 A093244 * A093246 A093247 A093248


KEYWORD

nonn


AUTHOR

Ray G. Opao, May 11 2004


EXTENSIONS

Corrected and extended by Robert G. Wilson v, Sep 02 2004
Name amended by Felix Fröhlich, Apr 15 2021


STATUS

approved



