The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093245 a(n) is the lesser term of the smallest twin prime pair such that if P=(a(n)^2+n)^2+n, then P and P+2 are also twin primes. a(n) is 0 if no such pair exists. 2
 3, 71, 0, 419, 71, 0, 5, 11, 0, 10271, 24977, 0, 29, 6869, 0, 3, 9011, 0, 881, 29, 0, 641, 17, 0, 41, 107, 0, 17, 179, 0, 5, 2801, 0, 10859, 11, 0, 59, 40637, 0, 461, 17957, 0, 431, 431, 0, 24977, 5, 0, 12611, 599, 0, 9431, 1091, 0, 107, 5867, 0, 3, 15731, 0, 5, 659, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Note that either P or P+2 is composite whenever n is a multiple of 3 and in this case a(n)=0. Conjecture: a(n) = 0 only if n is a multiple of 3. Note that this implies the existence of infinitely many twin primes. - Robert Israel, Apr 15 2021 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 EXAMPLE a(5) = 71: 71 and 73 are twin primes. (71^2+5)^2+5 = 25462121. 25462121 and 25462123 are also twin primes. MAPLE T:= [3, op(select(t -> isprime(t) and isprime(t+2), [seq(i, i=5..10^7, 6)]))]: f:= proc(n) local t, p; if n mod 3 = 0 then return 0 fi; for t in T do p:= (t^2+n)^2+n; if isprime(p) and isprime(p+2) then return t fi od; FAIL end proc: map(f, [\$1..100]); # Robert Israel, Apr 15 2021 MATHEMATICA f[n_] := Block[{k = 2}, If[ Mod[n, 3] != 0, While[ p = Prime[k]; q = (p^2 + n)^2 + n; !PrimeQ[p + 2] || !PrimeQ[q] || !PrimeQ[q + 2], k++ ]; p, 0]]; Table[ f[n], {n, 63}] (* Robert G. Wilson v, Sep 02 2004 *) CROSSREFS Cf. A093189. Sequence in context: A210920 A140048 A135951 * A108231 A130894 A254665 Adjacent sequences: A093242 A093243 A093244 * A093246 A093247 A093248 KEYWORD nonn AUTHOR Ray G. Opao, May 11 2004 EXTENSIONS Corrected and extended by Robert G. Wilson v, Sep 02 2004 Name amended by Felix Fröhlich, Apr 15 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 1 07:16 EST 2023. Contains 359981 sequences. (Running on oeis4.)