OFFSET
0,3
COMMENTS
Euler transform of period 15 sequence [2,2,0,2,4,0,2,2,0,4,2,0,2,2,0,...].
LINKS
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015.
FORMULA
G.f. A(x) satisfies 0=f(A(x), A(x^2)) where f(u, v)=u^3+v^3-4uv(u+v)-9u^2v^2-uv.
a(n) ~ exp(4*Pi*sqrt(n/15)) / (9*sqrt(2)*15^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jul 11 2016
MATHEMATICA
nmax = 50; CoefficientList[Series[x*Product[((1-x^(3*k)) * (1-x^(15*k)) / ((1-x^k) * (1-x^(5*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 11 2016 *)
PROG
(PARI) {a(n)=local(A); if(n<1, 0, n--; A=x*O(x^n); polcoeff((eta(x^3+A)*eta(x^15+A)/eta(x+A)/eta(x^5+A))^2, n))}
(PARI) {a(n)=local(A, u, v); if(n<0, 0, A=x; for(k=2, n, u=A+x*O(x^k); v=subst(u, x, x^2); A-=x^k*polcoeff(u^3+v^3-4*u*v*(u+v)-9*u^2*v^2-u*v, k+2)/2); polcoeff(A, n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 17 2004
EXTENSIONS
Changed offset to 0 and added a(0)=0 by Vaclav Kotesovec, Jul 11 2016
STATUS
approved