login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092985 a(n) = Arithofactorial(n) = AF(n) is the product of first n terms of an arithmetic progression with the first term 1 and common difference n. 3
1, 1, 3, 28, 585, 22176, 1339975, 118514880, 14454403425, 2326680294400, 478015854767451, 122087424094272000, 37947924636264267625, 14105590169042424729600, 6178966019176767549393375, 3150334059785191453342744576, 1849556085478041490537172810625 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

We have the triangle

1

1 3

1 4 7

1 5 9 13

1 6 11 16 21

1 7 13 19 25 31

...

Sequence contains the product of the terms of the rows.

a(n) = b(n-1) where b(n) = n^n*Gamma(n+1/n)/Gamma(1/n) and b(0) is limit n->0+ of b(n). - Gerald McGarvey, Nov 10 2007

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..200

FORMULA

a(n) = 1*(1+n)*(1+2n)*...*(n^2-n+1).

a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*n^(n-k). - Vladeta Jovovic, Jan 28 2005

a(n) = n! * [x^n] 1/(1 - n*x)^(1/n) for n > 0. - Ilya Gutkovskiy, Oct 05 2018

a(n) ~ sqrt(2*Pi) * n^(2*n - 3/2) / exp(n). - Vaclav Kotesovec, Oct 05 2018

EXAMPLE

a(5) = 1*6*11*16*21 = 22176.

MAPLE

a:= n-> mul(n*j+1, j=0..n-1):

seq(a(n), n=0..20);  # Alois P. Heinz, Nov 24 2015

MATHEMATICA

Flatten[{1, Table[n^(n - 1)*Pochhammer[1 + 1/n, n - 1], {n, 1, 20}]}] (* Vaclav Kotesovec, Oct 05 2018 *)

CROSSREFS

Cf. A057237, A092987.

Main diagonal of A256268.

Sequence in context: A062497 A056066 A174483 * A181588 A084880 A110259

Adjacent sequences:  A092982 A092983 A092984 * A092986 A092987 A092988

KEYWORD

easy,nonn

AUTHOR

Amarnath Murthy, Mar 28 2004

EXTENSIONS

More terms from Erich Friedman, Aug 08 2005

Offset corrected by Alois P. Heinz, Nov 24 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 04:26 EDT 2019. Contains 324183 sequences. (Running on oeis4.)