login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092628
Primes with exactly three nonprime digits.
1
101, 109, 149, 181, 191, 199, 401, 409, 419, 449, 461, 491, 499, 601, 619, 641, 661, 691, 809, 811, 881, 911, 919, 941, 991, 1013, 1021, 1031, 1039, 1051, 1063, 1087, 1093, 1097, 1103, 1117, 1129, 1151, 1163, 1171, 1187, 1193, 1201, 1249, 1289, 1291
OFFSET
1,1
LINKS
EXAMPLE
101 is prime and it has three nonprime digits, 0 and twice 1;
4261 is prime and it has three nonprime digits, 1, 4 and 6.
MAPLE
stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i, ans) ]; od; RETURN(anstren); end: ts_stnepf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i, ans))='false') then stpf:=stpf+1; # number of nonprime digits fi od; RETURN(stpf) end: ts_pr_neprnt:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( isprime(i)='true' and ts_stnepf(i) = 3) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_pr_neprnt(5000);
MATHEMATICA
dgQ[n_]:=Count[IntegerDigits[n], _?(!PrimeQ[#]&)]==3; Select[Prime[ Range[300]], dgQ] (* Harvey P. Dale, Oct 11 2011 *)
CROSSREFS
Sequence in context: A344802 A126118 A118773 * A107219 A366106 A140799
KEYWORD
nonn,base
AUTHOR
Jani Melik, Apr 11 2004
STATUS
approved