login
A092595
Numbers k such that the sum of decimal digits of k and k+1 are both prime numbers, i.e., both k and k+1 are in A028834.
1
2, 11, 20, 29, 49, 101, 110, 119, 139, 199, 200, 209, 229, 289, 319, 379, 409, 469, 559, 649, 739, 829, 919, 1001, 1010, 1019, 1039, 1099, 1100, 1109, 1129, 1189, 1219, 1279, 1309, 1369, 1459, 1549, 1639, 1729, 1819, 1909, 2000, 2009, 2029, 2089, 2119, 2179
OFFSET
1,1
LINKS
EXAMPLE
For k=4429, digitsum(k) = 4 + 4 + 2 + 9 = 19, digitsum(k+1) = 4 + 4 + 3 + 0 = 11.
MATHEMATICA
t=Table[0, {256}]; j=1; Do[s=Apply[Plus, IntegerDigits[n]]; s1=Apply[Plus, IntegerDigits[n+1]]; If[PrimeQ[s]&&PrimeQ[s1], Print[n]; t[[j]]=n; j=j+1], {n, 1, 10000}]; t
DeleteCases[ParallelTable[If[PrimeQ[Total[IntegerDigits[n]]]&&PrimeQ[Total[IntegerDigits[n+1]]], n, a], {n, 2, 952999}], a] (* J.W.L. (Jan) Eerland, Dec 20 2021 *)
PROG
(PARI) isok(n) = isprime(sumdigits(n)) && isprime(sumdigits(n+1)); \\ Michel Marcus, Jul 29 2017
CROSSREFS
Cf. A028834.
Sequence in context: A159879 A017185 A279774 * A175927 A116990 A327264
KEYWORD
base,nonn
AUTHOR
Labos Elemer, Mar 17 2004
STATUS
approved