login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091866 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having pyramid weight k. 16

%I

%S 1,0,1,0,0,2,0,0,1,4,0,0,1,5,8,0,0,1,7,18,16,0,0,1,9,34,56,32,0,0,1,

%T 11,55,138,160,64,0,0,1,13,81,275,500,432,128,0,0,1,15,112,481,1205,

%U 1672,1120,256,0,0,1,17,148,770,2471,4797,5264,2816,512,0,0,1,19,189,1156,4536,11403,17738,15808,6912,1024

%N Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having pyramid weight k.

%C A pyramid in a Dyck word (path) is a factor of the form u^h d^h, h being the height of the pyramid. A pyramid in a Dyck word w is maximal if, as a factor in w, it is not immediately preceded by a u and immediately followed by a d. The pyramid weight of a Dyck path (word) is the sum of the heights of its maximal pyramids.

%C Triangle T(n,k), 0<=k<=n, read by rows, given by [0, 0, 1, 0, 0, 1, 0, 0, 1, ...](periodic sequence 0,0,1) DELTA [1, 1, 0, 1, 1, 0, 1, 1, 0, ...](periodic sequence 1,1,0), where DELTA is the operator defined in A084938 . - _Philippe Deléham_, Aug 18 2006

%C _Peter Luschny_ observes that one of the rows of this triangle seems to appear on page 26 of Knuth (2014). - _N. J. A. Sloane_, Aug 02 2014

%H Alois P. Heinz, <a href="/A091866/b091866.txt">Rows n = 0..140, flattened</a>

%H A. Denise and R. Simion, <a href="http://dx.doi.org/10.1016/0012-365X(93)E0147-V">Two combinatorial statistics on Dyck paths</a>, Discrete Math., 137, 1995, 155-176.

%H D. E. Knuth, <a href="http://www-cs-faculty.stanford.edu/~uno/flaj2014.pdf">Problems That Philippe Would Have Loved</a>, Paris 2014.

%F G.f. = G = G(t, z) satisfies z(1-tz)G^2-(1+z-2tz)G+1-tz = 0.

%F Sum_{k=0..n} T(n,k) = A000108(n). - _Philippe Deléham_, Aug 18 2006

%e T(4,3)=5 because the Dyck paths of semilength 4 having pyramid weight 3 are: (ud)u(ud)(ud)d, u(ud)(ud)d(ud), u(ud)(ud)(ud)d, u(ud)(uudd)d and u(uudd)(ud)d [here u=(1,1), d=(1,-1) and the maximal pyramids, of total length 3, are shown between parentheses].

%e Triangle begins:

%e .[1],

%e .[0, 1],

%e .[0, 0, 2],

%e .[0, 0, 1, 4],

%e .[0, 0, 1, 5, 8],

%e .[0, 0, 1, 7, 18, 16],

%e .[0, 0, 1, 9, 34, 56, 32],

%e .[0, 0, 1, 11, 55, 138, 160, 64]

%e .[0, 0, 1, 13, 81, 275, 500, 432, 128]

%e ...

%K nonn,tabl

%O 0,6

%A _Emeric Deutsch_, Mar 10 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 12:55 EST 2016. Contains 278945 sequences.