login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091635
Number of primes less than 10^n which do not contain the digit 1.
10
4, 17, 101, 670, 4675, 34425, 262549, 2051466, 16312743, 131464721, 1071368863, 8809580516, 72986908554, 608542410004
OFFSET
1,1
FORMULA
Number of primes less than 10^n after removing any primes with at least one digit 1.
a(n) = A006880(n) - A091645(n).
EXAMPLE
a(2) = 17 because of the 25 primes less than 10^2, 8 have at least one digit 1; 25-8 = 17.
MATHEMATICA
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 1] == {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
PROG
(Python)
from sympy import sieve # import/use primerange for larger terms
def a(n): return sum('1' not in str(p) for p in sieve.primerange(1, 10**n))
print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Apr 17 2021
KEYWORD
nonn,base,more
AUTHOR
Enoch Haga, Jan 30 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v, Feb 02 2004
a(9)-a(12) from Donovan Johnson, Feb 14 2008
a(13) from Robert Price, Nov 08 2013
a(14) from Giovanni Resta, Mar 20 2017
STATUS
approved