login
Moebius-analog for the domain GF(2)[X]: a(n)=0 if A091221(n)!=A091222(n) (i.e., if the polynomial is not squarefree), otherwise (-1)^A091222(n).
9

%I #11 Jul 10 2015 19:34:28

%S 1,-1,-1,0,0,1,-1,0,1,0,-1,0,-1,1,0,0,0,-1,-1,0,0,1,1,0,-1,1,0,0,1,0,

%T -1,0,1,0,1,0,-1,1,0,0,-1,0,1,0,0,-1,-1,0,1,1,0,0,1,0,-1,0,0,-1,-1,0,

%U -1,1,0,0,0,-1,-1,0,0,-1,1,0,-1,1,0,0,1,0,1,0,0,1,-1,0,0,-1,-1,0,1,0

%N Moebius-analog for the domain GF(2)[X]: a(n)=0 if A091221(n)!=A091222(n) (i.e., if the polynomial is not squarefree), otherwise (-1)^A091222(n).

%C The absolute values give a characteristic function for squarefree GF(2)[X]-polynomials.

%H A. Karttunen, <a href="/A091247/a091247.scm.txt">Scheme-program for computing this sequence.</a>

%H <a href="/index/Ge#GF2X">Index entries for sequences operating on GF(2)[X]-polynomials</a>

%Y a(n) = A008683(A091203(n)) = A008683(A091205(n)).

%K sign

%O 1,1

%A _Antti Karttunen_, Jan 03 2004