login
T(n,k) = number of partitions of binomial(n,k), 0<=k<=n, triangular array read by rows.
2

%I #13 Feb 23 2017 22:21:38

%S 1,1,1,1,2,1,1,3,3,1,1,5,11,5,1,1,7,42,42,7,1,1,11,176,627,176,11,1,1,

%T 15,792,14883,14883,792,15,1,1,22,3718,526823,4087968,526823,3718,22,

%U 1,1,30,17977,26543660,3519222692,3519222692,26543660,17977,30,1,1,42,89134

%N T(n,k) = number of partitions of binomial(n,k), 0<=k<=n, triangular array read by rows.

%C a(n) = A000041(A007318(n));

%C T(n,0) = T(n,n) = 1; T(n,1) = T(n,n-1) = A000041(n), n>0.

%H Indranil Ghosh, <a href="/A090011/b090011.txt">Rows 0..20, flattened</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Partition.html">Partition</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BinomialCoefficient.html">Binomial Coefficient</a>

%e Triangle begins:

%e 1;

%e 1, 1;

%e 1, 2, 1;

%e 1, 3, 3, 1;

%e 1, 5, 11, 5, 1;

%e 1, 7, 42, 42, 7, 1;

%e 1, 11, 176, 627, 176, 11, 1;

%e 1, 15, 792, 14883, 14883, 792, 15, 1;

%e 1, 22, 3718, 526823, 4087968, 526823, 3718, 22, 1;

%e 1, 30, 17977, 26543660, 3519222692, 3519222692, 26543660, 17977, 30, 1;

%e 1, 42, 89134, 1844349560, 9275102575355, 269232701252579, 9275102575355, 1844349560, 89134, 42, 1; ...

%t Flatten[Table[PartitionsP[Binomial[n,k]],{n,0,10},{k,0,n}]] (* _Indranil Ghosh_, Feb 21 2017 *)

%o (PARI) T(n,k)=numbpart(binomial(n,k))

%o for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()) \\ _Paul D. Hanna_, Jun 14 2013

%Y Cf. A226659 (row sums), A128855 (central terms).

%K nonn,tabl

%O 0,5

%A _Reinhard Zumkeller_, Jan 28 2004

%E Data section corrected by _Indranil Ghosh_, Feb 21 2017