Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jun 20 2022 04:42:15
%S 1,0,-3,1,17,-49,-71,1079,-3263,-10529,156401,-624601,-1858319,
%T 42109055,-249633047,-187690049,17346988289,-159631097281,
%U 375894263521,8905140874583,-137481700309199,830604602372959,3549053339380121,-139582700722475473,1526848956867592513
%N (n+1)-st term of the n-th binomial transform of this sequence equals 1 for all n>=0.
%C Equals row sums of triangle A089962, which is the matrix inverse of triangle A071207.
%F a(n) = Sum_{k=0..n} (-1)^(n-k)*C(n, k)*n*k^(n-k-1).
%F Sum_{k=0..n} C(n, k)*n^(n-k)*a(k) = 1.
%F O.g.f.: A(x) = (1-x)*sum_{n>=0} x^n/(1+n*x)^(n+2).
%F E.g.f.: (1-x)*exp(x*exp(-x)).
%e Note the diagonal of 1's in the array of iterated binomial transforms:
%e [1, 0, -3, 1, 17, -49, -71, 1079,..]
%e [1, 1, -2, -7, 4, 17, -134, 121,..]
%e [1, 2, 1, -9, -31, -47, -135, -599,..]
%e [1, 3, 6, 1, -52, -271, -1034, -3895,..]
%e [1, 4, 13, 29, 1, -445, -3311, -18461,..]
%e [1, 5, 22, 81, 212, 1, -5166, -49631,..]
%e [1, 6, 33, 163, 689, 2117, 1, -75019,..]
%e [1, 7, 46, 281, 1564, 7553, 26830, 1,..]
%t Join[{1, 0}, Table[Sum[(-1)^(n - k)*Binomial[n, k]*n*k^(n - k - 1), {k, 0, n} ], {n, 2, 25}]] (* _Vaclav Kotesovec_, Jun 20 2022 *)
%o (PARI) a(n)=if(n<0,0,if(n==0,1,sum(k=0,n,(-1)^(n-k)*binomial(n,k)*n*k^(n-k-1) )))
%Y Cf. A089962, A071207.
%K sign
%O 0,3
%A _Paul D. Hanna_, Nov 18 2003
%E a(19) and a(20) concatenated by _Georg Fischer_, Jun 20 2022