login
A089718
a(0) = 1, a(n) = number obtained by multiplying each digit of a(n-1) by n. May be called digitfactorial of n.
5
1, 1, 2, 6, 24, 1020, 60120, 4207140, 32160568320, 2718954045547227180, 207010809050400405050407020207010800, 22077011088099055044004405505504407702202207701108800, 24240848401212096960108108060600484800484806060060600484808484024240242408484012120969600
OFFSET
0,3
LINKS
MAPLE
str10:=proc(n) if n<>0 then RETURN(convert(n, base, 10)) else RETURN([0]) fi end:ds:=proc(s) local j: RETURN(add(s[j]*10^(j-1), j=1..nops(s))): end: ap:=1: for n from 1 to 12 do m:=ds([seq(op(str10(i*n)), i=str10(ap))]): printf("%d, ", m):ap:=m od: # C. Ronaldo
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, (l-> parse(cat(seq(
l[-i]*n, i=1..nops(l)))))(convert(a(n-1), base, 10)))
end:
seq(a(n), n=0..12); # Alois P. Heinz, Dec 12 2020
MATHEMATICA
nxt[{n_, a_}]:={n+1, FromDigits[Flatten[IntegerDigits/@((n+1)*IntegerDigits[ a])]]}; Transpose[NestList[nxt, {1, 1}, 10]][[2]] (* Harvey P. Dale, Mar 26 2015 *)
CROSSREFS
Sequence in context: A088258 A227886 A290961 * A123150 A086591 A173609
KEYWORD
base,easy,nonn
AUTHOR
Amarnath Murthy, Nov 18 2003
EXTENSIONS
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 25 2004
a(0)=1 prepended by Alois P. Heinz, Dec 12 2020
STATUS
approved