login
Smallest positive integer not the permanent of a real {0,1}-matrix of order n.
4

%I #14 Oct 04 2024 09:24:45

%S 2,3,5,13,27,119,737,5153

%N Smallest positive integer not the permanent of a real {0,1}-matrix of order n.

%C a(6) from _Gordon F. Royle_.

%H Swee Hong Chan and Igor Pak, <a href="https://arxiv.org/abs/2308.10214">Computational complexity of counting coincidences</a>, arXiv:2308.10214 [math.CO], 2023. See p. 4.

%e a(2)=3 because {0,1,2} are expressible as permanents of (0, 1)-matrices.

%Y Cf. A089479 occurrence counts for permanents of (0, 1)-matrices, A087983 number of different values taken by permanent of (0, 1)-matrix, A013588 smallest number not expressible as determinant of (0, 1)-matrix.

%K hard,more,nonn

%O 1,1

%A _Hugo Pfoertner_, Nov 05 2003

%E a(7) from _Giovanni Resta_, Mar 29 2006

%E a(8) from _Minfeng Wang_, Oct 04 2024