login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A089442
Primes p such that (p-11)/10 is also a prime.
3
31, 41, 61, 181, 241, 421, 541, 601, 1021, 1321, 1381, 1741, 1801, 2281, 2341, 2521, 3121, 3181, 3541, 4021, 4201, 4441, 4621, 4801, 5101, 5581, 5641, 5701, 5881, 6421, 6481, 6781, 6841, 7621, 7741, 8101, 8221, 8581, 8641, 8821, 9421, 9721, 9781, 10141, 10321
OFFSET
1,1
LINKS
FORMULA
a(n) = prime(A143365(n)). - R. J. Mathar, Mar 26 2024
a(n) = 10*A155978(n)+11. - R. J. Mathar, Mar 26 2024
PROG
(PARI) diff2p(n, a, b) = { forprime(x=3, n, y=(x-a)/b; if(y==floor(y), if(isprime(y), print1(x, ", ")) ) ) };
diff2p(10500, 11, 10) \\ corrected by Hugo Pfoertner, Jan 20 2020
(Magma) [p:p in PrimesUpTo(10500)| IsIntegral((p-11)/10) and IsPrime((p-11) div 10)]; // Marius A. Burtea, Jan 20 2020
CROSSREFS
Sequence in context: A109550 A040991 A089721 * A243704 A060327 A202286
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Dec 28 2003
EXTENSIONS
All terms corrected by Juri-Stepan Gerasimov, Jul 01 2010
Corrections confirmed by N. J. A. Sloane, Jul 04 2010
STATUS
approved