login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089395
Prime productive numbers m: Let the digits of m be abcd. Then the numbers bcd*a+1, cd*ab+1, d*abc+1, abcd+1 etc. are all primes. If m is a k-digit number it produces k such primes.
4
1, 2, 4, 6, 12, 16, 22, 28, 36, 52, 58, 66, 82, 106, 112, 136, 166, 178, 256, 306, 336, 352, 448, 502, 508, 556, 562, 586, 616, 652, 658, 718, 982, 1018, 1108, 1162, 1192, 1228, 1498, 1708, 2002, 2026, 2086, 2686, 2776, 2998, 3136, 3412, 3526, 3592, 4078, 4918
OFFSET
0,2
COMMENTS
Conjecture: Sequence is infinite.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..139 (all terms up to 1 million)
EXAMPLE
256 is a term as 2*56 + 1 = 113, 25*6 + 1 = 151 and 256 + 1 = 257 are all primes.
MAPLE
with(combinat): ds:=proc(s) local j: RETURN(add(s[j]*10^(j-1), j=1..nops(s))):end: for d from 1 to 6 do sch:=[seq([1, op(i), d+1], i=[[], seq([j], j=2..d)])]: for n from 10^(d-1) to 10^d-1 do sn:=convert(n, base, 10): fl:=0: for s in sch do m:=mul(j, j=[seq(ds(sn[s[i]..s[i+1]-1]), i=1..nops(s)-1)])+1: if not isprime(m) then fl:=1: break fi od: if fl=0 then printf("%d, ", n) fi od od: # C. Ronaldo
MATHEMATICA
ppnQ[n_]:=Mod[n, 10]!=0&&AllTrue[Times@@@Table[FromDigits/@TakeDrop[ IntegerDigits[ n], k]/.(0->1), {k, IntegerLength[n]}]+1, PrimeQ]; Select[Range[5000], ppnQ] (* The program uses the AllTrue and TakeDrop functions from Mathematica version 10 *) (* Harvey P. Dale, Mar 23 2019 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Nov 10 2003
EXTENSIONS
Corrected and extended by C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 25 2004
STATUS
approved