login
A089198
Triangle read by rows: T(n,k) (n>=0, 0<=k<=n) = number of non-squashing partitions of n into distinct parts of which the greatest is k.
0
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 3, 3, 2, 2, 1, 1, 1
OFFSET
0,33
LINKS
N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
FORMULA
The nonzero values of T(n, m) lie within a certain cone: T(n, m) = 0 if m < n/2 or if m > n. For m <= n <= 2m, T(n, m) = sum_{i=0}^{m-1} T(n-m, i).
For m <= n <= 2m, T(n, m) = b(n-m) if n < 2m, = b(n-m) - 1 if n = 2m, where b = A088567.
EXAMPLE
Triangle begins:
1
0 1
0 0 1
0 0 1 1
0 0 0 1 1
0 0 0 1 1 1
0 0 0 1 1 1 1
0 0 0 0 2 1 1 1
0 0 0 0 1 2 1 1 1
MATHEMATICA
T[n_, m_] := T[n, m] = Which[n==m, 1, m<n/2 || m>n, 0, True, Sum[T[n-m, i], {i, 0, m-1}]];
Table[T[n, m], {n, 0, 12}, {m, 0, n}] // Flatten (* Jean-François Alcover, Feb 13 2019 *)
CROSSREFS
Row sums = A088567. Rows read from right to left also give (essentially) A088567.
Sequence in context: A086009 A086010 A321929 * A059607 A176724 A015318
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Dec 10 2003
STATUS
approved