OFFSET
1,1
COMMENTS
All factors of Mersenne numbers 2^p - 1, where p is prime, are == 1 (mod p). See the first Caldwell link for a proof of the statement that if q divides M_p = 2^p-1 then q = 2kp + 1 for some integer k. - Comment corrected by Jonathan Sondow, Dec 29 2016
LINKS
Max Alekseyev, Rows n = 1..197, flattened (rows 1..167 from Jens Kruse Andersen)
R. P. Brent, New factors of Mersenne numbers.
Chris K. Caldwell, Mersenne Primes: History, Theorems and Lists.
Chris K. Caldwell, The Prime Glossary, Mersenne divisor.
Sam Wagstaff, The Cunningham Project.
EXAMPLE
The 16th Mersenne number 2^53-1 has the three prime factors 6361, 69431, 20394401.
See tail end of second row in the sequence. Each factor is == 1 (mod 53).
Triangle begins:
3;
7;
31;
127;
23, 89;
8191;
131071;
524287;
47, 178481;
233, 1103, 2089;
2147483647;
223, 616318177;
13367, 164511353;
431, 9719, 2099863;
2351, 4513, 13264529;
6361, 69431, 20394401;
MATHEMATICA
row[n_]:=First/@FactorInteger[2^Prime[n]-1]; Array[row, 19]//Flatten (* Stefano Spezia, May 03 2024 *)
PROG
(PARI) mersenne(b, n, d) = { c=0; forprime(x=2, n, c++; y = b^x-1; f=factor(y); v=component(f, 1); ln = length(v); if(ln>=d, print1(v[d]", ")); ) }
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Cino Hilliard, Dec 06 2003
EXTENSIONS
Definition corrected by Max Alekseyev, Jul 25 2023
STATUS
approved