login
A089097
Convoluted convolved Fibonacci numbers G_j^(10).
0
0, 1, 6, 33, 141, 552, 1946, 6435, 20001, 59345, 168760, 463385, 1232823, 3191530, 8061092, 19919613, 48254154, 114812555, 268726954, 619603435, 1409005702, 3163562545, 7019574578, 15405769535, 33467185837, 72013318602, 153577775602
OFFSET
1,3
FORMULA
G.f.: (z/10)[1/(1-z-z^2)^10-1/(1-z^2-z^4)^5-1/(1-z^5-z^10)^2+1/(1-z^10-z^20)].
MAPLE
with(numtheory): f := z->1/(1-z-z^2): m := proc(r, j) d := divisors(r): W := (1/r)*z*sum(mobius(d[i])*f(z^d[i])^(r/d[i]), i=1..nops(d)): Wser := simplify(series(W, z=0, 80)): coeff(Wser, z^j) end: seq(m(10, j), j=1..40);
MATHEMATICA
terms = 27; r = 10; f[z_] := 1/(1 - z - z^2);
W = (z/r)*Sum[MoebiusMu[d]*f[z^d]^(r/d), {d, Divisors[r]}]+ O[z]^(terms+1);
CoefficientList[W, z] // Rest (* Jean-François Alcover, Dec 09 2017, from Maple *)
CROSSREFS
Sequence in context: A297392 A263479 A073375 * A120009 A074087 A297592
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 05 2003
EXTENSIONS
Edited by Emeric Deutsch, Mar 06 2004
STATUS
approved