login
A088577
Position of the first location of n in the digits of phi = 1.61803398874989....
3
5, 1, 20, 6, 12, 23, 2, 11, 4, 8, 232, 35, 122, 56, 255, 367, 1, 36, 3, 189, 20, 55, 63, 132, 79, 214, 68, 64, 52, 175, 41, 138, 182, 6, 27, 57, 29, 99, 33, 7, 106, 91, 348, 28, 59, 22, 71, 103, 16, 12, 215, 395, 67, 112, 58, 769, 31, 49, 23, 167, 69, 2, 51, 32, 300, 30, 124
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, Constant Digit Scanning
Eric Weisstein's World of Mathematics, Golden Ratio Digits
EXAMPLE
The first 0 is in the 5th position of the digits of Phi, so 5 is the first entry in the sequence.
MATHEMATICA
With[{phistr = StringDrop[ToString[N[GoldenRatio, 1000]], {2, 2}]}, Table[ StringPosition[phistr, ToString[n], 1][[1, 1]], {n, 0, 70}]] (* Harvey P. Dale, Sep 17 2011 *)
PROG
(PARI) trajphidigitsd(n, m) = { default(realprecision, 6000); p = (sqrt(5)+1)/2*10^5000; v = Vec(Str(p)); for(d=0, m, for(x=1, n, if(d<10, y = eval(v[x]), if(d<100, y = eval(v[x])*10 + eval(v[x+1]), if(d<1000, y = eval(v[x])*100 + eval(v[x+1])*10 + eval(v[x+2]), y = eval(v[x])*1000 + eval(v[x+1])*100 + eval(v[x+2])*10 + eval(v[x+3]) ); ); ); if(y == d, print1(x", "); break); ); ) }
CROSSREFS
Cf. A001622 (decimal expansion of phi).
Cf. A032445 (positions in Pi), A051238 (positions in e).
Sequence in context: A136394 A145372 A145373 * A368380 A127561 A144879
KEYWORD
nonn,base
AUTHOR
Cino Hilliard, Nov 19 2003
STATUS
approved