login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A088482 A four-level self-similar Sierpinski chaotic integer sequence. 0
5, 4, 10, 4, 9, 4, 25, 4, 13, 4, 26, 4, 17, 4, 64, 4, 21, 4, 42, 4, 25, 4, 73, 4, 29, 4, 58, 4, 33, 4, 128, 4, 37, 4, 74, 4, 41, 4, 121, 4, 45, 4, 90, 4, 49, 4, 192, 4, 53, 4, 106, 4, 57, 4, 169, 4, 61, 4, 122, 4, 65, 4, 256, 4, 69, 4, 138, 4, 73, 4, 217, 4, 77, 4, 154, 4, 81, 4, 320, 4, 85 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This procedure can be automated to higher levels of self similarity.

LINKS

Table of n, a(n) for n=0..80.

FORMULA

Let pk[n_]=n!/Product[i, {i, 1, n-Floor[n/2^k]}]. Then a(n) = Sum[Floor[pk[n]/pk[n-1]], {k, 1, 4}].

MATHEMATICA

digits=200 p1[n_]=n!/Product[i, {i, 1, n-Floor[n/2]}] p2[n_]=n!/Product[i, {i, 1, n-Floor[n/4]}] p3[n_]=n!/Product[i, {i, 1, n-Floor[n/8]}] p4[n_]=n!/Product[i, {i, 1, n-Floor[n/16]}] a1=Table[Floor[p1[n]/p1[n-1]], {n, 2, digits}] a2=Table[Floor[p2[n]/p2[n-1]], {n, 2, digits}] a3=Table[Floor[p3[n]/p3[n-1]], {n, 2, digits}] a4=Table[Floor[p4[n]/p4[n-1]], {n, 2, digits}] at=Table[a1[[n-1]]+a2[[n-1]]+a3[[n-1]]+a4[[n-1]], {n, 2, digits}] (* fractal plot*) ListPlot[at, PlotJoined->True, PlotRange->All]

CROSSREFS

Cf. A009531.

Sequence in context: A086654 A286461 A152064 * A163888 A309545 A285105

Adjacent sequences:  A088479 A088480 A088481 * A088483 A088484 A088485

KEYWORD

nonn,uned

AUTHOR

Roger L. Bagula, Nov 09 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 22:39 EST 2019. Contains 329305 sequences. (Running on oeis4.)