login
A088482
Let pk[n_]=n!/Product[i, {i, 1, n-Floor[n/2^k]}]. Then a(n) = Sum[Floor[pk[n]/pk[n-1]], {k, 1, 4}].
0
5, 4, 10, 4, 9, 4, 25, 4, 13, 4, 26, 4, 17, 4, 64, 4, 21, 4, 42, 4, 25, 4, 73, 4, 29, 4, 58, 4, 33, 4, 128, 4, 37, 4, 74, 4, 41, 4, 121, 4, 45, 4, 90, 4, 49, 4, 192, 4, 53, 4, 106, 4, 57, 4, 169, 4, 61, 4, 122, 4, 65, 4, 256, 4, 69, 4, 138, 4, 73, 4, 217, 4, 77, 4, 154, 4, 81, 4, 320, 4, 85
OFFSET
0,1
MATHEMATICA
digits=200
p1[n_]=n!/Product[i, {i, 1, n-Floor[n/2]}]
p2[n_]=n!/Product[i, {i, 1, n-Floor[n/4]}]
p3[n_]=n!/Product[i, {i, 1, n-Floor[n/8]}]
p4[n_]=n!/Product[i, {i, 1, n-Floor[n/16]}]
a1=Table[Floor[p1[n]/p1[n-1]], {n, 2, digits}]
a2=Table[Floor[p2[n]/p2[n-1]], {n, 2, digits}]
a3=Table[Floor[p3[n]/p3[n-1]], {n, 2, digits}]
a4=Table[Floor[p4[n]/p4[n-1]], {n, 2, digits}]
at=Table[a1[[n-1]]+a2[[n-1]]+a3[[n-1]]+a4[[n-1]], {n, 2, digits}]
CROSSREFS
Sequence in context: A086654 A286461 A152064 * A163888 A363323 A309545
KEYWORD
nonn,uned,less
AUTHOR
Roger L. Bagula, Nov 09 2003
STATUS
approved