%I #12 Jun 23 2020 19:04:30
%S 1,2,1,4,1,1,7,8,8,1,2,1,2,5,14,14,17,17,17,17,14,2,1,4,1,1,2,4,4,5,
%T 11,32,31,34,31,31,37,38,38,38,41,37,38,37,38,31,31,1,4,5,1,7,8,8,1,2,
%U 1,2,5,4,1,8,8,8,8,11,11,20,23,25,71,71,68,70,68,76,74,68,68,68,70,82,83,82
%N A linear version of the Josephus problem: a(n) = the function w_3(n).
%C The survivor w(n,3) in a modified Josephus problem, with a step of 3.
%C See A090569 or the reference for the definition of w(n,q).
%H Chris Groƫr, <a href="http://www.jstor.org/stable/3647800">The Mathematics of Survival: From Antiquity to the Playground</a>, Amer. Math. Monthly, 110 (No. 9, 2003), 812-825.
%H <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a>
%F A recurrence is given in the reference.
%Y Cf. A006257, A088442, A088452, A090569.
%K nonn
%O 1,2
%A _N. J. A. Sloane_, Nov 09 2003
%E Terms computed by Chris Groer (cgroer(AT)math.uga.edu)
%E More terms from _John W. Layman_, Feb 05 2004